Conducting Nanosheets and Nanoparticles for Supercapacitors and Fuel Cell Electrocatalysts
Advanced electrode materials and tailored design of the electrified interface are essential for electrochemical processes that rely on electrode/electrolyte interfaces. In particular, electrochemical capacitors (supercapacitors) and electrocatalysts depend on surface confined reactions and thus high...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2018/11/05, Vol.86(6), pp.281-290 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advanced electrode materials and tailored design of the electrified interface are essential for electrochemical processes that rely on electrode/electrolyte interfaces. In particular, electrochemical capacitors (supercapacitors) and electrocatalysts depend on surface confined reactions and thus high surface area nanomaterials are preferred. In this review, key advances in the development of conducting oxide nanosheets towards aqueous pseudocapacitors and fuel-cell related electrocatalysts will be highlighted, emphasizing results primarily from the authors’ laboratory. The synthesis of conductive nanosheets and its application towards pseudocapacitors and hybrid capacitors will be reviewed. The use of nanosheets as co-catalysts for Pt-based electrocatalysts as well as catalysts will be described. The morphology-property relation will be established for nanosheet electrochemistry, hopefully encouraging researchers in materials chemistry and electrochemistry to communicate and move forward together to stimulate enhancement in the important and expanding field of electrochemical energy storage and conversion. |
---|---|
ISSN: | 1344-3542 2186-2451 |
DOI: | 10.5796/electrochemistry.18-6-E2668 |