Serre type relations for complex semisimple Lie algebras associated to positive definite quasi-Cartan matrices
Cartan matrices play an important role in the classification of complex semi-simple Lie algebras. The well-known Serre's Theorem states that every finite dimensional complex semisimple Lie algebra g can be constructed from a Cartan matrix A by using generators and relations. We generalize Serre...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-04, Vol.567, p.14-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cartan matrices play an important role in the classification of complex semi-simple Lie algebras. The well-known Serre's Theorem states that every finite dimensional complex semisimple Lie algebra g can be constructed from a Cartan matrix A by using generators and relations. We generalize Serre's Theorem by associating to each positive definite quasi-Cartan matrix a complex semi-simple Lie algebra, and we prove that two positive definite quasi-Cartan matrices are equivalent if and only if its corresponding Lie algebras are isomorphic. This work complements the results obtained by Barot and Rivera in [1]. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2018.12.032 |