Serre type relations for complex semisimple Lie algebras associated to positive definite quasi-Cartan matrices

Cartan matrices play an important role in the classification of complex semi-simple Lie algebras. The well-known Serre's Theorem states that every finite dimensional complex semisimple Lie algebra g can be constructed from a Cartan matrix A by using generators and relations. We generalize Serre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-04, Vol.567, p.14-44
Hauptverfasser: Pérez, Claudia, Rivera, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cartan matrices play an important role in the classification of complex semi-simple Lie algebras. The well-known Serre's Theorem states that every finite dimensional complex semisimple Lie algebra g can be constructed from a Cartan matrix A by using generators and relations. We generalize Serre's Theorem by associating to each positive definite quasi-Cartan matrix a complex semi-simple Lie algebra, and we prove that two positive definite quasi-Cartan matrices are equivalent if and only if its corresponding Lie algebras are isomorphic. This work complements the results obtained by Barot and Rivera in [1].
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.12.032