Convergence Rate of Euler–Maruyama Scheme for SDEs with Hölder–Dini Continuous Drifts

In this paper, we are concerned with convergence rate of Euler–Maruyama scheme for stochastic differential equations with Hölder–Dini continuous drifts. The key contributions are as follows: (i) by means of regularity of non-degenerate Kolmogrov equation, we investigate convergence rate of Euler–Mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2019-06, Vol.32 (2), p.848-871
Hauptverfasser: Bao, Jianhai, Huang, Xing, Yuan, Chenggui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we are concerned with convergence rate of Euler–Maruyama scheme for stochastic differential equations with Hölder–Dini continuous drifts. The key contributions are as follows: (i) by means of regularity of non-degenerate Kolmogrov equation, we investigate convergence rate of Euler–Maruyama scheme for a class of stochastic differential equations which allow the drifts to be Dini continuous and unbounded; (ii) by the aid of regularization properties of degenerate Kolmogrov equation, we discuss convergence rate of Euler–Maruyama scheme for a range of degenerate stochastic differential equations where the drifts are Hölder–Dini continuous of order 2 3 with respect to the first component and are merely Dini-continuous concerning the second component.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-018-0854-9