Lunar surface image restoration using U-net based deep neural networks

Image restoration is a technique that reconstructs a feasible estimate of the original image from the noisy observation. In this paper, we present a U-Net based deep neural network model to restore the missing pixels on the lunar surface image in a context-aware fashion, which is often known as imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-04
Hauptverfasser: Hiya Roy, Chaudhury, Subhajit, Yamasaki, Toshihiko, DeLatte, Danielle, Ohtake, Makiko, Hashimoto, Tatsuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image restoration is a technique that reconstructs a feasible estimate of the original image from the noisy observation. In this paper, we present a U-Net based deep neural network model to restore the missing pixels on the lunar surface image in a context-aware fashion, which is often known as image inpainting problem. We use the grayscale image of the lunar surface captured by Multiband Imager (MI) onboard Kaguya satellite for our experiments and the results show that our method can reconstruct the lunar surface image with good visual quality and improved PSNR values.
ISSN:2331-8422