Graham type theorem on classical bounded symmetric domains

Graham Theorem on the unit ball B n in C n states that every invariant harmonic function u ∈ C n ( B ¯ n ) must be pluriharmonic in B n (Graham in Commun Partial Differ Equ 8(5):433–476, 1983 ). This rigidity phenomenon of Graham has been studied by many authors [see, for examples, Graham and Lee (D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2019-04, Vol.58 (2), p.1-25, Article 81
Hauptverfasser: Chen, Ren-Yu, Li, Song-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graham Theorem on the unit ball B n in C n states that every invariant harmonic function u ∈ C n ( B ¯ n ) must be pluriharmonic in B n (Graham in Commun Partial Differ Equ 8(5):433–476, 1983 ). This rigidity phenomenon of Graham has been studied by many authors [see, for examples, Graham and Lee (Duke Math J 57:697–720, 1988 ), Li and Simon (Am J Math 124:1045–1057, 2002 ), Li and Wei (Sci China Math 53:779–790, 2010 ), etc]. In this paper, we prove that Graham theorem holds on classical bounded symmetric domains, which include Type I and Type II domains, Type III domain III(n) and Type IV domain IV( n ) with even n ≥ 4 .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-019-1517-0