Graham type theorem on classical bounded symmetric domains
Graham Theorem on the unit ball B n in C n states that every invariant harmonic function u ∈ C n ( B ¯ n ) must be pluriharmonic in B n (Graham in Commun Partial Differ Equ 8(5):433–476, 1983 ). This rigidity phenomenon of Graham has been studied by many authors [see, for examples, Graham and Lee (D...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2019-04, Vol.58 (2), p.1-25, Article 81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graham Theorem on the unit ball
B
n
in
C
n
states that every invariant harmonic function
u
∈
C
n
(
B
¯
n
)
must be pluriharmonic in
B
n
(Graham in Commun Partial Differ Equ 8(5):433–476,
1983
). This rigidity phenomenon of Graham has been studied by many authors [see, for examples, Graham and Lee (Duke Math J 57:697–720,
1988
), Li and Simon (Am J Math 124:1045–1057,
2002
), Li and Wei (Sci China Math 53:779–790,
2010
), etc]. In this paper, we prove that Graham theorem holds on classical bounded symmetric domains, which include Type I and Type II domains, Type III domain III(n) and Type IV domain IV(
n
) with even
n
≥
4
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-019-1517-0 |