On Convergence of Arbitrary D-Solution of Steady Navier–Stokes System in 2D Exterior Domains
We study solutions to stationary Navier–Stokes system in a two dimensional exterior domain. We prove that any such solution with a finite Dirichlet integral converges to a constant vector at infinity uniformly. No additional conditions (on symmetry or smallness, etc.) are assumed. In the proofs we d...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2019-07, Vol.233 (1), p.385-407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study solutions to stationary Navier–Stokes system in a two dimensional exterior domain. We prove that any such solution with a finite Dirichlet integral converges to a constant vector at infinity uniformly. No additional conditions (on symmetry or smallness, etc.) are assumed. In the proofs we develop the ideas of the classical papers of Gilbarg and Weinberger (Ann Sc Norm Pisa (4) 5:381–404,
1978
) and Amick (Acta Math 161:71–130,
1988
). |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-019-01359-8 |