On Convergence of Arbitrary D-Solution of Steady Navier–Stokes System in 2D Exterior Domains

We study solutions to stationary Navier–Stokes system in a two dimensional exterior domain. We prove that any such solution with a finite Dirichlet integral converges to a constant vector at infinity uniformly. No additional conditions (on symmetry or smallness, etc.) are assumed. In the proofs we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-07, Vol.233 (1), p.385-407
Hauptverfasser: Korobkov, Mikhail V., Pileckas, Konstantin, Russo, Remigio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study solutions to stationary Navier–Stokes system in a two dimensional exterior domain. We prove that any such solution with a finite Dirichlet integral converges to a constant vector at infinity uniformly. No additional conditions (on symmetry or smallness, etc.) are assumed. In the proofs we develop the ideas of the classical papers of Gilbarg and Weinberger (Ann Sc Norm Pisa (4) 5:381–404, 1978 ) and Amick (Acta Math 161:71–130, 1988 ).
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-019-01359-8