Difference Sets Disjoint from a Subgroup
We study finite groups G having a non-trivial, proper subgroup H and D ⊂ G \ H , D ∩ D - 1 = ∅ , such that the multiset { x y - 1 : x , y ∈ D } has every non-identity element occur the same number of times (such a D is called a difference set ). We show that | G | = | H | 2 , and that | D ∩ H g | =...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2019-05, Vol.35 (3), p.579-597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study finite groups
G
having a non-trivial, proper subgroup
H
and
D
⊂
G
\
H
,
D
∩
D
-
1
=
∅
,
such that the multiset
{
x
y
-
1
:
x
,
y
∈
D
}
has every non-identity element occur the same number of times (such a
D
is called a
difference set
). We show that
|
G
|
=
|
H
|
2
, and that
|
D
∩
H
g
|
=
|
H
|
/
2
for all
g
∉
H
. We show that
H
is contained in every normal subgroup of index 2, and other properties. We give a 2-parameter family of examples of such groups. We show that such groups have Schur rings with four principal sets, and that, further, these difference sets determine DRADs. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-019-02017-2 |