Difference Sets Disjoint from a Subgroup

We study finite groups G having a non-trivial, proper subgroup H and D ⊂ G \ H , D ∩ D - 1 = ∅ , such that the multiset { x y - 1 : x , y ∈ D } has every non-identity element occur the same number of times (such a D is called a difference set ). We show that | G | = | H | 2 , and that | D ∩ H g | =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2019-05, Vol.35 (3), p.579-597
Hauptverfasser: Hoagland, Courtney, Humphries, Stephen P., Nicholson, Nathan, Poulsen, Seth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study finite groups G having a non-trivial, proper subgroup H and D ⊂ G \ H , D ∩ D - 1 = ∅ , such that the multiset { x y - 1 : x , y ∈ D } has every non-identity element occur the same number of times (such a D is called a difference set ). We show that | G | = | H | 2 , and that | D ∩ H g | = | H | / 2 for all g ∉ H . We show that H is contained in every normal subgroup of index 2, and other properties. We give a 2-parameter family of examples of such groups. We show that such groups have Schur rings with four principal sets, and that, further, these difference sets determine DRADs.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-019-02017-2