Two-Level Master-Slave RFID Networks Planning via Hybrid Multiobjective Artificial Bee Colony Optimizer
Radio frequency identification (RFID) networks planning (RNP) is a challenging task on how to deploy RFID readers under certain constraints. Existing RNP models are usually derived from the flat and centralized-processing framework identified by vertical integration within a set of objectives which...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2019-05, Vol.49 (5), p.861-880 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio frequency identification (RFID) networks planning (RNP) is a challenging task on how to deploy RFID readers under certain constraints. Existing RNP models are usually derived from the flat and centralized-processing framework identified by vertical integration within a set of objectives which couple different types of control variables. This paper proposes a two-level RNP model based on the hierarchical decoupling principle to reduce computational complexity, in which the cost-efficient planning at the top levels is modeled with a set of discrete control variables (i.e., switch states of readers), and the quality of service objectives at the bottom level are modeled with a set of continuous control variables (i.e., physical coordinate and radiate power). The model of the objectives at the two levels is essentially a multiobjective problem. In order to optimize this model, this paper proposes a specific multiobjective artificial bee colony optimizer called H-MOABC, which is based on performance indicators with reinforcement learning and orthogonal Latin squares approach. The proposed algorithm proves to be competitive in dealing with two-objective and three-objective optimization problems in comparison with state-of-the-art algorithms. In the experiments, H-MOABC is employed to solve the two scalable real-world RNP instances in the hierarchical decoupling manner. Computational results shows that the proposed H-MOABC is very effective and efficient in RFID networks optimization. |
---|---|
ISSN: | 2168-2216 2168-2232 |
DOI: | 10.1109/TSMC.2017.2723483 |