TDOA-/FDOA-Based Adaptive Active Target Localization Using Iterated Dual-EKF Algorithm
Most geolocation methods use only the time difference of arrival for estimating the emitter's location. In this letter, to obtain the velocity estimate values of an active target, we use the frequency difference of arrival. The iterated dual-extended Kalman filter (EKF) algorithm is used as a g...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2019-04, Vol.23 (4), p.752-755 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most geolocation methods use only the time difference of arrival for estimating the emitter's location. In this letter, to obtain the velocity estimate values of an active target, we use the frequency difference of arrival. The iterated dual-extended Kalman filter (EKF) algorithm is used as a geolocation process for a moving emitter. In comparison with the dual-EKF algorithm, the parameter estimation filter's update speed of the iterated dual-EKF algorithm shows a high convergence rate through the iteration process. To verify the performance of the proposed algorithm, simulation results by using the iterated dual-EKF algorithm are presented. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2019.2899615 |