Fluid particle dynamics and the non-local origin of the Reynolds shear stress

The causative factors leading to the Reynolds shear stress distribution in turbulent channel flow are analysed via a backward particle path analysis. It is found that the classical displacement transport mechanism, by which changes in the mean velocity field over a mixing time correlate with the wal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2018-07, Vol.847, p.520-551
Hauptverfasser: Bernard, Peter S., Erinin, Martin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The causative factors leading to the Reynolds shear stress distribution in turbulent channel flow are analysed via a backward particle path analysis. It is found that the classical displacement transport mechanism, by which changes in the mean velocity field over a mixing time correlate with the wall-normal velocity, is the dominant source of Reynolds shear stress. Approximately 20 % of channel flow at any given time contains fluid motions that contribute to displacement transport. Much rarer events provide a small but non-negligible contribution to the Reynolds shear stress due to fluid particle accelerations and long-lived correlations deriving from structural features of the near-wall flow. The Reynolds shear stress in channel flow is shown to be a non-local phenomenon that is not conducive to description via a local model and particularly one depending directly on the local mean velocity gradient.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.333