Three-dimensional quasi-geostrophic vortex equilibria with -fold symmetry

We investigate arrays of $m$ three-dimensional, unit-Burger-number, quasi-geostrophic vortices in mutual equilibrium whose centroids lie on a horizontal circular ring; or $m+1$ vortices where the additional vortex lies on the vertical ‘central’ axis passing through the centre of the array. We first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-03, Vol.863, p.32-59
1. Verfasser: Reinaud, Jean N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate arrays of $m$ three-dimensional, unit-Burger-number, quasi-geostrophic vortices in mutual equilibrium whose centroids lie on a horizontal circular ring; or $m+1$ vortices where the additional vortex lies on the vertical ‘central’ axis passing through the centre of the array. We first analyse the linear stability of circular point vortex arrays. Three distinct categories of vortex arrays are considered. In the first category, the $m$ identical point vortices are equally spaced on a circular ring and no vortex is located on the vertical central axis. In the other two categories, a ‘central’ vortex is added. The latter two categories differ by the sign of the central vortex. We next turn our attention to finite-volume vortices for the same three categories. The vortices consist of finite volumes of uniform potential vorticity, and the equilibrium vortex arrays have an (imposed) $m$ -fold symmetry. For simplicity, all vortices have the same volume and the same potential vorticity, in absolute value. For such finite-volume vortex arrays, we determine families of equilibria which are spanned by the ratio of a distance separating the vortices and the array centre to the vortices’ mean radius. We determine numerically the shape of the equilibria for $m=2$ up to $m=7$ , for each three categories, and we address their linear stability. For the $m$ -vortex circular arrays, all configurations with $m\geqslant 6$ are unstable. Point vortex arrays are linearly stable for $m
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.989