An analytic solution for the noise generated by gust–aerofoil interaction for plates with serrated leading edges

This paper presents an analytic solution for the sound generated by an unsteady gust interacting with a semi-infinite flat plate with a serrated leading edge in a background steady uniform flow. Viscous and nonlinear effects are neglected. The Wiener–Hopf method is used in conjunction with a non-ort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2018-10, Vol.853, p.515-536
Hauptverfasser: Ayton, Lorna J., Kim, Jae Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an analytic solution for the sound generated by an unsteady gust interacting with a semi-infinite flat plate with a serrated leading edge in a background steady uniform flow. Viscous and nonlinear effects are neglected. The Wiener–Hopf method is used in conjunction with a non-orthogonal coordinate transformation and separation of variables to permit analytical progress. The solution is obtained in terms of a modal expansion in the spanwise coordinate; however, for low- and mid-range incident frequencies only the zeroth-order mode is seen to contribute to the far-field acoustics, therefore the far-field noise can be quickly evaluated. The solution gives insight into the potential mechanisms behind the reduction of noise for plates with serrated leading edges compared to those with straight edges, and predicts a logarithmic dependence between the tip-to-root serration height and the decrease of far-field noise. The two mechanisms behind the noise reduction are proposed to be an increased destructive interference in the far field, and a redistribution of acoustic energy from low cut-on modes to higher cut-off modes as the tip-to-root serration height is increased. The analytic results show good agreement in comparison with experimental measurements. The results are also compared against nonlinear numerical predictions where good agreement is also seen between the two results as frequency and tip-to-root ratio are varied.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.583