A comparison of microstructure and mechanical properties of laser cladding and laser-induction hybrid cladding coatings on full-scale rail

With the rapid development of high-speed and heavy-haul trains, the surface damages of rails are becoming more and more severe, and how to promote the surface strength of the rail and prolong its service life with high efficiency are becoming extremely important. Laser cladding (LC), with small heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-03, Vol.748, p.1-15
Hauptverfasser: Meng, Li, Zhao, Wenfang, Hou, Kangle, Kou, Donghua, Yuan, Zhonghua, Zhang, Xiang, Xu, Jialong, Hu, Qianwu, Wang, Dengzhi, Zeng, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of high-speed and heavy-haul trains, the surface damages of rails are becoming more and more severe, and how to promote the surface strength of the rail and prolong its service life with high efficiency are becoming extremely important. Laser cladding (LC), with small heat affected zone (HAZ) and low dilution, is a promising novel way to hardface and repair the rail. However, there are two great barriers for the traditional LC to apply on full-scale rails: one is how to prevent the coating from cracking under the rapid heating and cooling cycle; the other is how to eliminate the martensite structure in HAZ, which may threaten the safety of railway transportation due to its high hardness and low fracture toughness and usually be forbidden in almost all the Railway Standards over the world. In this paper, laser-induction hybrid cladding (LIHC) was innovatively proposed to deposit Ni-based coatings on a full-scale rail. The cracking behaviors, microstructures and mechanical properties of the coatings and HAZs by LC, LIHC with induction pre-heating (pre-LIHC) and LIHC with induction post-heating (post-LIHC) were studied systemically. The results indicate that the cracking and martensite transformation occurred in the HAZ can only be prevented by post-LIHC, where fine pearlite with smaller pearlite block size and lower interlamellar spacing formed instead. Therefore, the abrupt change of microstructure and mechanical properties in the HAZ could be avoided by post-LIHC, and the hardness, strength and toughness of the rails can be improved significantly. The post-LIHC technology shows the potentiality to hardface and repair the full-scale rail.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2019.01.068