Mathematical Expression of Design Hysteretic Energy Spectra Based on Chinese Soil Type

This paper explores the energy-based seismic design based on source-to-site distance and the site classification found in Chinese national codes. Specifically, 750 ground motion records were selected according to Chinese site classification, and the equivalent velocity spectra of cumulative hysteret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-10
Hauptverfasser: Ma, Cuiling, Sun, Guohua, Gu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper explores the energy-based seismic design based on source-to-site distance and the site classification found in Chinese national codes. Specifically, 750 ground motion records were selected according to Chinese site classification, and the equivalent velocity spectra of cumulative hysteretic energy (HE) demand were derived using the energy-balance equation with the single degree of freedom (SDOF) system. In addition, the effects of soil type, earthquake magnitude, site group, structural damping ratio, and ductility ratio were investigated on the HE spectra, and mathematical expression of the equivalent velocity spectrum was presented. The analysis of the HE spectra indicated that the HE spectra were significantly affected by the ground acceleration amplitude, soil type, site group, and damping ratio. The ductility ratio also had an impact on the spectral value, but no effect on the spectral shape. The effect of postyielding stiffness ratio (PYSR) on the spectral shape and spectral value could be neglected. The research findings shed new light on the seismic design based on HE spectrum.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/3483516