Reversible high temperature dielectric switching in a 2H-perovskite compound: [Me3NCH2CH3]CdCl3

Organic–inorganic hybrid materials with a high-temperature phase transition have been widely applied as a kind of smart material. In this work, a new organic–inorganic 2H-perovskite compound, namely [Me3NCH2CH3]CdCl3 (1), is reported with a high temperature dielectric transition showing excellent re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2019, Vol.21 (16), p.2669-2674
Hauptverfasser: Dong-Sheng, Sun, Yao-Zu, Zhang, Ji-Xing, Gao, Xiu-Ni Hua, Xiao-Gang, Chen, Guang-Quan Mei, Wei-Qiang Liao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic–inorganic hybrid materials with a high-temperature phase transition have been widely applied as a kind of smart material. In this work, a new organic–inorganic 2H-perovskite compound, namely [Me3NCH2CH3]CdCl3 (1), is reported with a high temperature dielectric transition showing excellent reversibility and sustainability. 1 has an ABX3 hybrid perovskite structure, where A is a [Me3NCH2CH3]+ cation, B is a divalent metal atom, and X is a halogen atom. Differential scanning calorimetry (DSC) and dielectric measurements were applied for further characterization. Variable temperature single-crystal X-ray diffraction revealed that 1 crystallizes in the orthorhombic Pbca space group (No. 61) at 293 K and hexagonal P63/mmc space group (No. 194) at 363 K. The structural phase transition is primarily attributed to an ordered–disordered type resulting from the [Me3NCH2CH3]+ cations. Organic–inorganic perovskite compounds, as a result of a long exploration history and forward-looking prospects, can deepen research into molecular materials and their physical properties can be effectively optimized in the next-generation of temperature-responsive electrical switches.
ISSN:1466-8033
DOI:10.1039/c8ce02174k