Reversible high temperature dielectric switching in a 2H-perovskite compound: [Me3NCH2CH3]CdCl3
Organic–inorganic hybrid materials with a high-temperature phase transition have been widely applied as a kind of smart material. In this work, a new organic–inorganic 2H-perovskite compound, namely [Me3NCH2CH3]CdCl3 (1), is reported with a high temperature dielectric transition showing excellent re...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2019, Vol.21 (16), p.2669-2674 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic–inorganic hybrid materials with a high-temperature phase transition have been widely applied as a kind of smart material. In this work, a new organic–inorganic 2H-perovskite compound, namely [Me3NCH2CH3]CdCl3 (1), is reported with a high temperature dielectric transition showing excellent reversibility and sustainability. 1 has an ABX3 hybrid perovskite structure, where A is a [Me3NCH2CH3]+ cation, B is a divalent metal atom, and X is a halogen atom. Differential scanning calorimetry (DSC) and dielectric measurements were applied for further characterization. Variable temperature single-crystal X-ray diffraction revealed that 1 crystallizes in the orthorhombic Pbca space group (No. 61) at 293 K and hexagonal P63/mmc space group (No. 194) at 363 K. The structural phase transition is primarily attributed to an ordered–disordered type resulting from the [Me3NCH2CH3]+ cations. Organic–inorganic perovskite compounds, as a result of a long exploration history and forward-looking prospects, can deepen research into molecular materials and their physical properties can be effectively optimized in the next-generation of temperature-responsive electrical switches. |
---|---|
ISSN: | 1466-8033 |
DOI: | 10.1039/c8ce02174k |