The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions

The well-posedness of the initial boundary-value problem for the nonstationary radiation transfer equation in a three-dimensional bounded domain with generalized matching conditions at the interfaces is studied. The case of the matching operator expressed as a linear combination of operators of Fres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2019, Vol.105 (1-2), p.80-90
1. Verfasser: Prokhorov, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well-posedness of the initial boundary-value problem for the nonstationary radiation transfer equation in a three-dimensional bounded domain with generalized matching conditions at the interfaces is studied. The case of the matching operator expressed as a linear combination of operators of Fresnel and Lambert types is considered. The existence of a unique strongly continuous semigroup of solving operators of the Cauchy problem is proved, and stabilization conditions for the nonstationary solution are obtained.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434619010097