Ohmic Heating of Magnetohydrodynamic Viscous Flow over a Continuous Moving Plate with Viscous Dissipation Buoyancy and Thermal Radiation
This study extends previous investigation on ohmic heating of magnetohydrodynamic viscous fluid flow over a continuous moving plate to include radiative heat-loss, viscous dissipation and buoyancy effects. The mathematical formulation representing the modified physical model involves a system of thr...
Gespeichert in:
Veröffentlicht in: | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2019-04, Vol.392, p.73-91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study extends previous investigation on ohmic heating of magnetohydrodynamic viscous fluid flow over a continuous moving plate to include radiative heat-loss, viscous dissipation and buoyancy effects. The mathematical formulation representing the modified physical model involves a system of three partial differential equations, which are transformed into a system of two coupled non-linear ordinary differential equations using suitable dimensionless variables. Thereafter, the resulting dimensionless system of equations governing modified model are solved via Homotopy Analysis Method (HAM). The accuracy and convergence of solutions are validated by comparing the results obtained with those in literature and they are in good agreement. Parametric study is performed to illustrate the effects of emerging parameters on fluid velocity and temperature, skin friction coefficient and Nusselt number. It is found that the impacts of pertinent parameters due to the extensions are significant and these are presented in graphs and tables. The results indicate that the skin friction coefficient and the heat transfer rate increase with the increasing values of thermal radiation and decrease with the increasing value of viscous dissipation parameter. |
---|---|
ISSN: | 1012-0386 1662-9507 1662-9507 |
DOI: | 10.4028/www.scientific.net/DDF.392.73 |