Numerical Modeling of the Casting Process and Impact Loading of a Steel-Fiber-Reinforced High-Performance Self-Compacting Concrete

With the rapid development of high-performance self-compacting fiber-reinforced concrete materials, advanced numerical modeling tools have become necessary to design optimum materials and structures. A simulation framework that includes numerical modeling of the flow of a high-performance self-compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of composite materials 2019-03, Vol.55 (1), p.29-40
Hauptverfasser: Sliseris, J., Korjakins, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of high-performance self-compacting fiber-reinforced concrete materials, advanced numerical modeling tools have become necessary to design optimum materials and structures. A simulation framework that includes numerical modeling of the flow of a high-performance self-compacting fiber-reinforced concrete mortar during the casting process, calculation of local fiber orientation based on the deformation gradient in the mortar, and impact modeling taking into account the local fiber orientation is proposed. A new method to calculate the probability of fiber orientation distribution by particle tracking and approximation of particle motion using the deformation gradient is proposed. A discrete lattice modeling technique, with a nonlinear strain-rate- and local-fiber-orientation-dependent constitutive law for a numerical impact modeling is proposed. Single- and three-point concrete casting techniques are numerically simulated, and results are compared with experimental measurements, showing a good agreement. The numerical models revealed that fiber orientation and the impact resistance of beams strongly depended on the casting technology of the self-compacting concrete. The numerical model proposed can be used to design efficient concrete casting technologies ensuring the necessary fiber orientation in load-bearing structures..
ISSN:0191-5665
1573-8922
DOI:10.1007/s11029-019-09789-x