Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells

The disparate pH requirements for borohydride oxidation and peroxide reduction in direct borohydride fuel cells (DBFCs) currently hinder their performance and efficiency. Here we develop a pH-gradient-enabled microscale bipolar interface (PMBI) that facilitates sharply different local pH environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2019-04, Vol.4 (4), p.281-289
Hauptverfasser: Wang, Zhongyang, Parrondo, Javier, He, Cheng, Sankarasubramanian, Shrihari, Ramani, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The disparate pH requirements for borohydride oxidation and peroxide reduction in direct borohydride fuel cells (DBFCs) currently hinder their performance and efficiency. Here we develop a pH-gradient-enabled microscale bipolar interface (PMBI) that facilitates sharply different local pH environments at the anode and cathode of a DBFC. Using a recessed planar electrode in conjunction with transmission electron microscopy, we show that the PMBI maintained a sharp local pH gradient (0.82 pH units nm –1 on average) at the electrocatalytic reaction site. The PMBI configuration enabled enhanced performance in a DBFC compared with either all-anion- or all-cation-exchange configurations (330 mA cm –2 at 1.5 V and a peak power density of 630 mW cm –2 at 1.0 V, respectively). The high power densities obtained at voltages well above 1.0 V—achieved by virtue of the effective separation of anolyte and catholyte locally at the electrocatalytically active sites by the PMBI—provide a pathway to reduce fuel cell stack size for autonomous propulsion applications. Maintaining a pH gradient across a fuel cell improves device efficiency and flexibility in device chemistry. Here the authors develop an efficient microscale bipolar interface for direct borohydride fuel cells, enabling sustained operations with a pH differential between the anolyte and the catholyte.
ISSN:2058-7546
2058-7546
DOI:10.1038/s41560-019-0330-5