Interaction of nano-TiO₂ with lysozyme: insights into the enzyme toxicity of nanosized particles

Background, aim, and scope Nanomaterials have been used increasingly in industrial production and daily life, but their human exposure may cause health risks. The interactions of nanomaterial with functional biomolecules are often applied as a precondition for its cytotoxicity and organ toxicity whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2010-03, Vol.17 (3), p.798-806
Hauptverfasser: Xu, Zhen, Liu, Xi-Wei, Ma, Yin-Sheng, Gao, Hong-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background, aim, and scope Nanomaterials have been used increasingly in industrial production and daily life, but their human exposure may cause health risks. The interactions of nanomaterial with functional biomolecules are often applied as a precondition for its cytotoxicity and organ toxicity where various proteins have been investigated in the past years. In the present study, nano-TiO₂ was selected as the representative of nanomaterials and lysozyme as a representative for enzymes. By investigating their interaction by various instrumentations, the objective is to identify the action sites and types, estimate the effect on the enzyme structure and activity, and reveal the toxicity mechanism of nanomaterial. Materials and methods Laboratory-scale experiments were carried out to investigate the interactions of nano-TiO₂ with lysozyme. The interaction of nano-TiO₂ particles with lysozyme has been studied in the analogous physiological media in detail by UV spectrometry, fluorophotometry, circular dichroism (CD), scanning electron microscope, ζ-potential, and laser particle size. Results The interaction accorded with the Langmuir isothermal adsorption and the saturation number of lysozyme is determined to be 580 per nano-TiO₂ particle (60 nm of size) with 4.7 × 10⁶ M⁻¹ of the stability constant in the physiological media. The acidity and ion strength of the media obviously affected the binding of lysozyme. The warping and deformation of the lysozyme bridging were demonstrated by the conversion of its spatial structure from α-helix into a β-sheet, measured by CD. In the presence of nano-TiO₂, the bacteriolysis activity of lysozyme was subjected to an obvious inhibition. Discussion The two-step binding model of lysozyme was proposed, in which lysozyme was adsorbed on nano-TiO₂ particle surface by electrostatic interaction and then the hydrogen bond (N-H···O and O-H···O) formed between nano-TiO₂ particle and polar side groups of lysozyme. The adsorption of lysozyme obeyed the Langmuir isothermal model. The binding of lysozyme is dependent on the acidity and ion strength of the media. The bigger TiO₂ aggregate was formed in the presence of lysozyme where lysozyme may bridge between nano-TiO₂ particles. The coexistence of nano-TiO₂ particles resulted in the transition of lysozyme conformation from an α-helix into a β-sheet and a substantial inactivation of lysozyme. The β-sheet can induce the formation of amyloid fibrils, a process which plays a major role in
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-009-0153-1