Proteomic discovery of Max as a novel interacting partner of C EBP : a Myc Max Mad link

The transcription factor CCAAT/enhancer binding protein a (C/EBPalpha) is important in the regulation of granulopoiesis and is disrupted in human acute myeloid leukemia. In the present study, we sought to identify novel C/EBPalpha interacting proteins in vivo through immunoprecipitation using mass s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2006-12, Vol.20 (12), p.2137-2146
Hauptverfasser: Zada, A A, Pulikkan, J A, Bararia, D, Geletu, M, Trivedi, A K, Balkhi, M Y, Hiddemann, W D, Tenen, D G, Behre, H M, Behre, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transcription factor CCAAT/enhancer binding protein a (C/EBPalpha) is important in the regulation of granulopoiesis and is disrupted in human acute myeloid leukemia. In the present study, we sought to identify novel C/EBPalpha interacting proteins in vivo through immunoprecipitation using mass spectrometry-based proteomic techniques. We identified Max, a heterodimeric partner of Myc, as one of the interacting proteins of C/EBPalpha in our screen. We confirmed the in vivo interaction of C/EBPalpha with Max and showed that this interaction involves the basic region of C/EBPalpha. Endogenous C/EBPalpha and Max, but not Myc and Max, colocalize in intranuclear structures during granulocytic differentiation of myeloid U937 cells. Max enhanced the transactivation capacity of C/EBPalpha on a minimal promoter. A chromatin immunoprecipitation assay revealed occupancy of the human C/EBPalpha promoter in vivo by Max and Myc under cellular settings and by C/EBPalpha and Max under retinoic acid induced granulocytic differentiation. Interestingly, enforced expression of Max and C/EBPalpha results in granulocytic differentiation of the human hematopoietic CD34(+) cells, as evidenced by CD11b, CD15 and granulocyte colony-stimulating factor receptor expression. Silencing of Max by short hairpin RNA in CD34(+) and U937 cells strongly reduced the differentiation-inducing potential of C/EBPalpha, indicating the importance of C/EBPalpha-Max in myeloid progenitor differentiation. Taken together, our data reveal Max as a novel co-activator of C/EBPalpha functions, thereby suggesting a possible link between C/EBPalpha and Myc-Max-Mad network.
ISSN:0887-6924
1476-5551
DOI:10.1038/sj.leu.2404438