Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements

We have investigated miniature inverted-repeat transposable elements (MITEs) of the Stowaway family and corresponding Mariner-like master elements that could potentially facilitate their mobilization in the genome of the garden pea (Pisum sativum L.). The population of pea Stowaway MITEs consists of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome 2005-10, Vol.48 (5), p.831-839
Hauptverfasser: Macas, J, Kobilzkova, A, Neumann, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated miniature inverted-repeat transposable elements (MITEs) of the Stowaway family and corresponding Mariner-like master elements that could potentially facilitate their mobilization in the genome of the garden pea (Pisum sativum L.). The population of pea Stowaway MITEs consists of 10(3)-10(4) copies dispersed in the genome. Judging from a sequence analysis of 17 isolated Stowaway elements and their flanking genomic regions, the elements are relatively uniform in size and sequence and occur in the vicinity of genes as well as within repetitive sequences. Insertional polymorphism of several elements was detected among various Pisum accessions, suggesting they were still transpositionally active during diversification of these taxa. The identification of several Mariner-like elements (MLEs) harboring intact open reading frames, capable of encoding a transposase, further supports a recent mobilization of the Stowaway elements. Using transposase-coding sequences as a hybridization probe, we estimated that there are about 50 MLE sequences in the pea genome. Among the 5 elements sequenced, 3 distinct subfamilies showing mutual similarities within their transposase-coding regions, but otherwise diverged in sequence, were distinguished and designated as Psmar-1 to Psmar-3. The terminal inverted repeats (TIRs) of these MLE subfamilies differed in their homology to the TIRs of Stowaway MITEs. The homlogy ranged from 9 bp in Psmar-3 to 30 bp in Psmar-1, which corresponds to the complete Stowaway TIR sequence. Based on this feature, the Psmar-1 elements are believed to be the most likely candidates for the master elements of the Stowaway MITEs in pea.
ISSN:0831-2796
1480-3321
DOI:10.1139/g05-047