Isochronicity-induced bifurcations in systems of weakly dissipative couples oscillators

We consider the dynamics of networks of oscillators that are weakly dissipative perturbations of identical Hamiltonian oscillators with weak coupling. If the coupling is much weaker than the dissipation we can use averaging to reduce the system to phase equations on a torus. We consider example appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamics and stability of systems 2000-09, Vol.15 (3), p.263
Hauptverfasser: Ashwin, Peter, Dangelmayr, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the dynamics of networks of oscillators that are weakly dissipative perturbations of identical Hamiltonian oscillators with weak coupling. If the coupling is much weaker than the dissipation we can use averaging to reduce the system to phase equations on a torus. We consider example applications to two and three weakly diffusively coupled oscillators with points of isochronicity and reduce to approximating flows on tori. We use this to identify bifurcation of various periodic solutions on perturbing away from a point of isochronicity.
ISSN:1468-9367
1468-9375