Identification of dysregulated genes in lymphocytes from children with Down syndrome

The molecular mechanisms by which trisomy of human chromosome 21 disrupts normal development are not well understood. Global transcriptome studies attempting to analyze the consequences of trisomy in Down syndrome (DS) tissues have reported conflicting results, which have led to the suggestion that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome 2008-01, Vol.51 (1), p.19-29
Hauptverfasser: Sommer, Cesar A, Pavarino-Bertelli, Erika C, Goloni-Bertollo, Eny M, Henrique-Silva, Flavio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The molecular mechanisms by which trisomy of human chromosome 21 disrupts normal development are not well understood. Global transcriptome studies attempting to analyze the consequences of trisomy in Down syndrome (DS) tissues have reported conflicting results, which have led to the suggestion that the analysis of specific tissues or cell types may be more productive. In the present study, we set out to analyze global changes of gene expression in lymphocytes from children with trisomy 21 by means of the serial analysis of gene expression (SAGE) methodology. Two SAGE libraries were constructed using pooled RNA of normal and Down syndrome children. Comparison between DS and normal profiles revealed that most of the transcripts were expressed at similar levels and functional classes of abundant genes were equally represented. Among the 242 significantly differentially expressed SAGE tags, several transcripts downregulated in DS code for proteins involved in T-cell and B-cell receptor signaling (e.g., PI3K δ, RGS2, LY6E, FOS, TAGAP, CD46). The SAGE data and interindividual variability were validated by real-time quantitative PCR. Our results indicate that trisomy 21 induces a modest dysregulation of disomic genes that may be related to the immunological perturbations seen in DS.
ISSN:0831-2796
1480-3321
DOI:10.1139/G07-100