Climate change in the Congo Basin: processes related to wetting in the December–February dry season
The Congo Basin is one of three key areas of tropical convection and contains the planet’s second largest rainforest. Understanding how global warming might change its climate is crucial, particularly during the dry seasons, when rainfall amounts currently bring the rainforest boundaries close to th...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2019-09, Vol.53 (5-6), p.3583-3602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Congo Basin is one of three key areas of tropical convection and contains the planet’s second largest rainforest. Understanding how global warming might change its climate is crucial, particularly during the dry seasons, when rainfall amounts currently bring the rainforest boundaries close to the threshold of viability. There is considerable uncertainty in projections of future rainfall change from the Coupled Model Intercomparison Project (CMIP5) under the high-emissions experiment (RCP8.5). Whilst there is a general trend towards wetting in most months, its magnitude varies considerably. In the December to February dry season, the projected change in seasonal rainfall varies from 2 to 160 mm across models. This study uses a regionally-focused process-based assessment to understand inter-model differences in rainfall projections, as a first step to assessing their plausibility. Models which produce the most wetting by the end of the century feature enhanced convection over the Congo Basin region, enhanced subsidence in the African subtropics, and decreased uplift over the Maritime Continent. In contrast, models with a small wetting response feature reduced convection over the Congo Basin. This indicates that wetting over the Congo Basin is related to a weakening of the Indian Ocean Walker circulation, reminiscent of a positive Indian Ocean Dipole state. Models with the highest magnitude wetting also feature greater low-to-mid-level moisture flux from the north and the east compared to models with less wetting. These results indicate that the future degree of wetting over the Congo Basin will be linked to changes in convection over the Maritime Continent. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-019-04728-x |