Multipopulation-based multi-level parallel enhanced Jaya algorithms
To solve optimization problems, in the field of engineering optimization, an optimal value of a specific function must be found, in a limited time, within a constrained or unconstrained domain. Metaheuristic methods are useful for a wide range of scientific and engineering applications, which accele...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2019-03, Vol.75 (3), p.1697-1716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve optimization problems, in the field of engineering optimization, an optimal value of a specific function must be found, in a limited time, within a constrained or unconstrained domain. Metaheuristic methods are useful for a wide range of scientific and engineering applications, which accelerate being able to achieve optimal or near-optimal solutions. The metaheuristic method called Jaya has generated growing interest because of its simplicity and efficiency. We present Jaya-based parallel algorithms to efficiently exploit cluster computing platforms (heterogeneous memory platforms). We propose a multi-level parallel algorithm, in which, to exploit distributed-memory architectures (or multiprocessors), the outermost layer of the Jaya algorithm is parallelized. Moreover, in internal layers, we exploit shared-memory architectures (or multicores) by adding two more levels of parallelization. This two-level internal parallel algorithm is based on both a multipopulation structure and an improved heuristic search path relative to the search path of the sequential algorithm. The multi-level parallel algorithm obtains average efficiency values of 84% using up to 120 and 135 processes, and slightly accelerates the convergence with respect to the sequential Jaya algorithm. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-019-02759-z |