Group actions on 2-categories

We study actions of discrete groups on 2-categories. The motivating examples are actions on the 2-category of representations of finite tensor categories and their relation with the extension theory of tensor categories by groups. Associated to a group action on a 2-category, we construct the 2-cate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2019-05, Vol.159 (1-2), p.81-115
Hauptverfasser: Bernaschini, Eugenia, Galindo, César, Mombelli, Martín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study actions of discrete groups on 2-categories. The motivating examples are actions on the 2-category of representations of finite tensor categories and their relation with the extension theory of tensor categories by groups. Associated to a group action on a 2-category, we construct the 2-category of equivariant objects. We also introduce the G -equivariant notions of pseudofunctor, pseudonatural transformation and modification. Our first main result is a coherence theorem for 2-categories with an action of a group. For a 2-category B with an action of a group G , we construct a braided G -crossed monoidal category Z G ( B ) with trivial component the Drinfeld center of B . We prove that, in the case of a G -action on the 2-category of representation of a tensor category C , the 2-category of equivariant objects is biequivalent to the module categories over an associated G -extension of C . Finally, we prove that the center of the equivariant 2-category is monoidally equivalent to the equivariantization of a relative center, generalizing results obtained in Gelaki et al. (Algebra Number Theory 3(8):959–990, 2009 ).
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-018-1031-2