Auslander-Reiten triangles and Grothendieck groups of triangulated categories
We prove that if the Auslander-Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull-Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangula...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if the Auslander-Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull-Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander-Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories. |
---|---|
ISSN: | 2331-8422 |