On Approximating the Stationary Distribution of Time-Reversible Markov Chains

Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require Õ ( τ / π ( v ) ) operations to approximate the probability π ( v ) of a state v in a chain with mixing time τ , and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2020-04, Vol.64 (3), p.444-466
Hauptverfasser: Bressan, Marco, Peserico, Enoch, Pretto, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require Õ ( τ / π ( v ) ) operations to approximate the probability π ( v ) of a state v in a chain with mixing time τ , and even the best available techniques still have complexity Õ ( τ 1.5 / π ( v ) 0.5 ) ; and since these complexities depend inversely on π ( v ), they can grow beyond any bound in the size of the chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there exists a simple randomized approximation algorithm that breaks this “small- π ( v ) barrier”.
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-019-09921-3