On Approximating the Stationary Distribution of Time-Reversible Markov Chains
Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require Õ ( τ / π ( v ) ) operations to approximate the probability π ( v ) of a state v in a chain with mixing time τ , and...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2020-04, Vol.64 (3), p.444-466 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require
Õ
(
τ
/
π
(
v
)
)
operations to approximate the probability
π
(
v
) of a state
v
in a chain with mixing time
τ
, and even the best available techniques still have complexity
Õ
(
τ
1.5
/
π
(
v
)
0.5
)
; and since these complexities depend inversely on
π
(
v
), they can grow beyond any bound in the size of the chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there exists a simple randomized approximation algorithm that breaks this “small-
π
(
v
) barrier”. |
---|---|
ISSN: | 1432-4350 1433-0490 |
DOI: | 10.1007/s00224-019-09921-3 |