SynSeg-Net: Synthetic Segmentation Without Target Modality Ground Truth

A key limitation of deep convolutional neural network (DCNN)-based image segmentation methods is the lack of generalizability. Manually traced training images are typically required when segmenting organs in a new imaging modality or from distinct disease cohort. The manual efforts can be alleviated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-04, Vol.38 (4), p.1016-1025
Hauptverfasser: Huo, Yuankai, Xu, Zhoubing, Moon, Hyeonsoo, Bao, Shunxing, Assad, Albert, Moyo, Tamara K., Savona, Michael R., Abramson, Richard G., Landman, Bennett A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A key limitation of deep convolutional neural network (DCNN)-based image segmentation methods is the lack of generalizability. Manually traced training images are typically required when segmenting organs in a new imaging modality or from distinct disease cohort. The manual efforts can be alleviated if the manually traced images in one imaging modality (e.g., MRI) are able to train a segmentation network for another imaging modality (e.g., CT). In this paper, we propose an end-to-end synthetic segmentation network (SynSeg-Net) to train a segmentation network for a target imaging modality without having manual labels. SynSeg-Net is trained by using: 1) unpaired intensity images from source and target modalities and 2) manual labels only from source modality. SynSeg-Net is enabled by the recent advances of cycle generative adversarial networks and DCNN. We evaluate the performance of the SynSeg-Net on two experiments: 1) MRI to CT splenomegaly synthetic segmentation for abdominal images and 2) CT to MRI total intracranial volume synthetic segmentation for brain images. The proposed end-to-end approach achieved superior performance to two-stage methods. Moreover, the SynSeg-Net achieved comparable performance to the traditional segmentation network using target modality labels in certain scenarios. The source code of SynSeg-Net is publicly available.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2018.2876633