Multiple-Change-Point Modeling and Exact Bayesian Inference of Degradation Signal for Prognostic Improvement
Prognostics play an increasingly important role in modern engineering systems for smart maintenance decision-making. In parametric regression-based approaches, the parametric models are often too rigid to model degradation signals in many applications. In this paper, we propose a Bayesian multiple-c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2019-04, Vol.16 (2), p.613-628 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prognostics play an increasingly important role in modern engineering systems for smart maintenance decision-making. In parametric regression-based approaches, the parametric models are often too rigid to model degradation signals in many applications. In this paper, we propose a Bayesian multiple-change-point (CP) modeling framework to better capture the degradation path and improve the prognostics. At the offline modeling stage, a novel stochastic process is proposed to model the joint prior of CPs and positions. All hyperparameters are estimated through an empirical two-stage process. At the online monitoring and remaining useful life (RUL) prediction stage, a recursive updating algorithm is developed to exactly calculate the posterior distribution and RUL prediction sequentially. To control the computational cost, a fixed-support-size strategy in the online model updating and a partial Monte Carlo strategy in the RUL prediction are proposed. The effectiveness and advantages of the proposed method are demonstrated through thorough simulation and real case studies. |
---|---|
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2018.2844204 |