Resource Allocation for Full-Duplex Systems With Imperfect Co-Channel Interference Estimation

In-band full-duplex (FD) systems have been widely studied because they can double the spectral efficiency (SE) compared with conventional half-duplex (HD) systems, theoretically. However, inherent interference caused by both self-interference (SI) and co-channel interference (CCI) makes FD systems t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2019-04, Vol.18 (4), p.2388-2400
Hauptverfasser: Park, Eunhye, Bae, Jimin, Ju, Hyungsik, Han, Youngnam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In-band full-duplex (FD) systems have been widely studied because they can double the spectral efficiency (SE) compared with conventional half-duplex (HD) systems, theoretically. However, inherent interference caused by both self-interference (SI) and co-channel interference (CCI) makes FD systems to achieve theoretical SE hard. In this paper, we propose a CCI estimation and cancellation (CCI-EC) protocol for the FD systems to overcome performance degradation due to CCI. We suggest to use a coherence channel block for two phases: CCI channel is estimated at a downlink (DL) user through uplink (UL) pilot signals in the first phase, then a base station (BS) and a UL user transmit their data simultaneously in the second phase, in which a DL user cancels interfering signals from a UL user by utilizing the estimated CCI channel information. We analyze the achievable SE of FD systems with CCI-EC and formulate a resource allocation problem to maximize it, where resource includes pilot and data transmission time, and transmit power of a BS and a UL user. A closed-form optimal power allocation for UL pilot and data transmissions and a suboptimal power allocation for DL data transmission are provided. The simulation results show that FD systems with the proposed CCI-EC achieve near-optimal achievable SE and outperform the conventional HD systems and FD systems without CCI-EC in terms of the achievable SE. Especially, the SE gain achieved by the proposed CCI-EC protocol in FD systems is remarkable under severe interference environment.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2019.2903803