A photothermal-triggered nitric oxide nanogenerator combined with siRNA for precise therapy of osteoarthritis by suppressing macrophage inflammation

Although nitric oxide (NO) can be used to treat osteoarthritis (OA) by inhibiting inflammation, a method for the accurately controlled release of NO in inflammatory cells is still elusive. Herein, photothermal-triggered NO nanogenerators NO-Hb@siRNA@PLGA-PEG (NHsPP) were constructed by assembling ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-04, Vol.11 (14), p.6693-6709
Hauptverfasser: Chen, Xu, Liu, Yanan, Wen, Yayu, Yu, Qianqian, Liu, Jiawei, Zhao, Yingyu, Liu, Jie, Ye, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although nitric oxide (NO) can be used to treat osteoarthritis (OA) by inhibiting inflammation, a method for the accurately controlled release of NO in inflammatory cells is still elusive. Herein, photothermal-triggered NO nanogenerators NO-Hb@siRNA@PLGA-PEG (NHsPP) were constructed by assembling photothermal-agents and NO molecules within nanoparticles. In the NHsPP nanoparticles the hemoglobin (Hb) nanoparticles can act as a NO carrier which can absorb near-infrared light at 650 nm (0.5 W cm-2) and convert it into heat to trigger the release of NO. Moreover, after loading Notch1-siRNA, precise treatment can be achieved. Furthermore, using the synergistic effect of photothermal therapy, the NHsPP nanoparticles achieved simultaneous treatment with NO, siRNA and PTT. Through this combination therapy, the therapeutic effect of the NHsPP nanoparticles was significantly enhanced compared to the treatment groups using only NO, siRNA or PTT. This combination therapy inhibits the inflammatory response effectively by reducing the level of pro-inflammatory cytokines and the macrophage response. Subsequently, guided by dual-modal imaging, the NHsPP nanoparticles can not only accumulate effectively in OA mice, but can also reduce the inflammatory response and efficiently prevent cartilage erosion, without causing toxic side effects in the major organs. Therefore, this novel photothermal nanoparticle-based NO-releasing system is expected to be a potential alternative for clinical inflammatory disease therapy and may provide image guidance when combined with other nanotherapy systems.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr10013f