Irreducibility of the Laplacian eigenspaces of some homogeneous spaces

For a compact homogeneous space G  /  K , we study the problem of existence of G -invariant Riemannian metrics such that each eigenspace of the Laplacian is a real irreducible representation of G . We prove that the normal metric of a compact irreducible symmetric space has this property only in ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2019-02, Vol.291 (1-2), p.395-419
Hauptverfasser: Petrecca, David, Röser, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a compact homogeneous space G  /  K , we study the problem of existence of G -invariant Riemannian metrics such that each eigenspace of the Laplacian is a real irreducible representation of G . We prove that the normal metric of a compact irreducible symmetric space has this property only in rank one. Furthermore, we provide existence results for such metrics on certain isotropy reducible spaces.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-018-2088-z