Irreducibility of the Laplacian eigenspaces of some homogeneous spaces
For a compact homogeneous space G / K , we study the problem of existence of G -invariant Riemannian metrics such that each eigenspace of the Laplacian is a real irreducible representation of G . We prove that the normal metric of a compact irreducible symmetric space has this property only in ran...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2019-02, Vol.291 (1-2), p.395-419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a compact homogeneous space
G
/
K
, we study the problem of existence of
G
-invariant Riemannian metrics such that each eigenspace of the Laplacian is a real irreducible representation of
G
. We prove that the normal metric of a compact irreducible symmetric space has this property only in rank one. Furthermore, we provide existence results for such metrics on certain isotropy reducible spaces. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-018-2088-z |