Distance Metrics and Clustering Methods for Mixed‐type Data

Summary In spite of the abundance of clustering techniques and algorithms, clustering mixed interval (continuous) and categorical (nominal and/or ordinal) scale data remain a challenging problem. In order to identify the most effective approaches for clustering mixed‐type data, we use both theoretic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2019-04, Vol.87 (1), p.80-109
Hauptverfasser: Foss, Alexander H., Markatou, Marianthi, Ray, Bonnie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary In spite of the abundance of clustering techniques and algorithms, clustering mixed interval (continuous) and categorical (nominal and/or ordinal) scale data remain a challenging problem. In order to identify the most effective approaches for clustering mixed‐type data, we use both theoretical and empirical analyses to present a critical review of the strengths and weaknesses of the methods identified in the literature. Guidelines on approaches to use under different scenarios are provided, along with potential directions for future research.
ISSN:0306-7734
1751-5823
DOI:10.1111/insr.12274