Some applications of Scherer-Hol's theorem for polynomial matrices
In this paper we establish some applications of the Scherer-Hol's theorem for polynomial matrices. Firstly, we give a representation for polynomial matrices positive definite on subsets of compact polyhedra. Then we establish a Putinar-Vasilescu Positivstellensatz for homogeneous and non-homoge...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we establish some applications of the Scherer-Hol's theorem for polynomial matrices. Firstly, we give a representation for polynomial matrices positive definite on subsets of compact polyhedra. Then we establish a Putinar-Vasilescu Positivstellensatz for homogeneous and non-homogeneous polynomial matrices. Next we propose a matrix version of the Pólya-Putinar-Vasilescu Positivstellensatz. Finally, we approximate positive semi-definite polynomial matrices using sums of squares. |
---|---|
ISSN: | 2331-8422 |