Some applications of Scherer-Hol's theorem for polynomial matrices

In this paper we establish some applications of the Scherer-Hol's theorem for polynomial matrices. Firstly, we give a representation for polynomial matrices positive definite on subsets of compact polyhedra. Then we establish a Putinar-Vasilescu Positivstellensatz for homogeneous and non-homoge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-03
Hauptverfasser: Dinh, Trung Hoa, Minh Toan Ho, Cong Trinh Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish some applications of the Scherer-Hol's theorem for polynomial matrices. Firstly, we give a representation for polynomial matrices positive definite on subsets of compact polyhedra. Then we establish a Putinar-Vasilescu Positivstellensatz for homogeneous and non-homogeneous polynomial matrices. Next we propose a matrix version of the Pólya-Putinar-Vasilescu Positivstellensatz. Finally, we approximate positive semi-definite polynomial matrices using sums of squares.
ISSN:2331-8422