Complexiton solutions to the Hirota‐Satsuma‐Ito equation
The Hirota bilinear method is a powerful tool for solving nonlinear evolution equations. Together with the linear superposition principle, it can be used to find a special class of explicit solutions that correspond to complex eigenvalues of associated characteristic problems. These solutions are kn...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-05, Vol.42 (7), p.2344-2351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Hirota bilinear method is a powerful tool for solving nonlinear evolution equations. Together with the linear superposition principle, it can be used to find a special class of explicit solutions that correspond to complex eigenvalues of associated characteristic problems. These solutions are known as complexiton solutions or simply complexitons. In this article, we study complexiton solutions of the the Hirota‐Satsuma‐Ito equation which is a (2 + 1)‐dimensional extension of the Hirota‐Satsuma shallow water wave equation known to describe propagation of unidirectional shallow water waves. We first construct hyperbolic function solutions and consequently derive the so‐called complexitons via the Hirota bilinear method and the linear superposition principle. In particular, we find nonsingular complexiton solutions to the Hirota‐Satsuma‐Ito equation. Finally, we give some illustrative examples and a few concluding remarks. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.5512 |