Transient activation of NF-[kappa]B through a TAK1/IKK kinase pathway by TGF-[beta]1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation
NF-kappaB has been implicated in the regulation of apoptosis, a key mechanism of normal and malignant growth control. Previously, we demonstrated that inhibition of NF-kappaB activity by TGF-beta1 leads directly to induction of apoptosis of murine B-cell lymphomas and hepatocytes. Thus, we were surp...
Gespeichert in:
Veröffentlicht in: | Oncogene 2003-01, Vol.22 (3), p.412 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NF-kappaB has been implicated in the regulation of apoptosis, a key mechanism of normal and malignant growth control. Previously, we demonstrated that inhibition of NF-kappaB activity by TGF-beta1 leads directly to induction of apoptosis of murine B-cell lymphomas and hepatocytes. Thus, we were surprised to determine that NF-kappaB is transiently activated in response to TGF-beta1 treatment. Here we elucidate the mechanism of TGF-beta1-mediated regulation of NF-kappaB and induction of apoptosis in epithelial cells. We report that TGF-beta1 activates IKK kinase, which mediates IkappaB-alpha phosphorylation. In turn, the activation of IKK following TGF-beta1 treatment is mediated by the TAK1 kinase. As a result of NF-kappaB activation, IkappaB-alpha mRNA and protein levels are increased leading to postrepression of NF-kappaB and induction of cell death. Inhibition of NF-kappaB following TGF-beta1 treatment increased AP-1 complex transcriptional activity through sustained c-Jun phosphorylation, thereby potentiating AP-1/SMADs-mediated cell killing. Furthermore, TGF-beta1-mediated upregulation of Smad7 appeared independent of NF-kappaB. In hepatocellular carcinomas of TGF-beta1 or TGF-alpha/c-myc transgenic mice, we observed constitutive activation of NF-kappaB that led to inhibition of JNK signaling. Overall, our data illustrate an autocrine mechanism based on the ability of IKK/NF-kappaB/IkappaB-alpha signaling to negatively regulate NF-kappaB levels thereby permitting TGF-beta1-induced apoptosis through AP-1 activity. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/sj.onc.1206132 |