Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites

Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2019-04, Vol.59 (4), p.704-713
Hauptverfasser: Athanasoulia, Ioanna‐Georgia I., Tarantili, Petroula A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 4
container_start_page 704
container_title Polymer engineering and science
container_volume 59
creator Athanasoulia, Ioanna‐Georgia I.
Tarantili, Petroula A.
description Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with increasing TiO2 content. Differential scanning calorimetry (DSC) tests revealed that cold crystallization was facilitated, as shown by the decrease of cold crystallization temperature (Tcc). The main melting peak of PLLA phase in nanocomposites, shifted towards higher temperatures and a shoulder appeared in the lower temperature flank of the curve, revealing a second peak for 20/80 w/w TiO2/PLLA nanocomposites. The effect of TiO2 on the isothermal crystallization of PLLA, in the temperature range Tic: 100–120°C, was also investigated by DSC. At lower temperatures (Tic: 100 and 110°C), the effect of TiO2 nanoparticles is an increase of the crystallization rate, leading to lower time for the completion of crystallization, in comparison with that of pure PLLA. The inverse effect was observed at higher crystallization temperatures (Tic: 115 and 120°C). The kinetic analysis of the crystallization behavior of the examined nanocomposites fits the Avrami equation quite well and gives values for exponent (n) varying between 2 and 3, suggesting a spherulitic crystalline morphology. POLYM. ENG. SCI., 59:704–713, 2019. © 2018 Society of Plastics Engineers
doi_str_mv 10.1002/pen.24986
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2200739064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200739064</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1906-c91d218c0b16e6568275595112deb3b3b18693ca87c5855264867849ff7ea9a43</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqUw8AaWWGBI60vs2COquEkV7VAGJst1HHCV2CF2Bdl4BJ6RJyFt0T-cf_h0jvQBcInRBCNEpq31E5JLwY_ACLNcZITT_BiMEKIko0KIU3AW4wYNLGVyBF5X77ZrdA1Tp310yQUfofYljEmvXe1SD0MFG1sn2LgvW8KVW5DpMtT99fz3-6fWJjkDtXHlDfTaBxOaNgw9Np6Dk0rX0V785xi83N-tZo_ZfPHwNLudZ29YIp4ZiUuChUFrzC1nXJCCMckwJqVd0-Gw4JIaLQrDBGOE54IXIpdVVVgtdU7H4OrQ23bhY2tjUpuw7fwwqQhBqKDDyo6aHqhPV9tetZ1rdNcrjNROmxq0qb02tbx73j_0D8DWYbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200739064</pqid></control><display><type>article</type><title>Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Athanasoulia, Ioanna‐Georgia I. ; Tarantili, Petroula A.</creator><creatorcontrib>Athanasoulia, Ioanna‐Georgia I. ; Tarantili, Petroula A.</creatorcontrib><description>Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with increasing TiO2 content. Differential scanning calorimetry (DSC) tests revealed that cold crystallization was facilitated, as shown by the decrease of cold crystallization temperature (Tcc). The main melting peak of PLLA phase in nanocomposites, shifted towards higher temperatures and a shoulder appeared in the lower temperature flank of the curve, revealing a second peak for 20/80 w/w TiO2/PLLA nanocomposites. The effect of TiO2 on the isothermal crystallization of PLLA, in the temperature range Tic: 100–120°C, was also investigated by DSC. At lower temperatures (Tic: 100 and 110°C), the effect of TiO2 nanoparticles is an increase of the crystallization rate, leading to lower time for the completion of crystallization, in comparison with that of pure PLLA. The inverse effect was observed at higher crystallization temperatures (Tic: 115 and 120°C). The kinetic analysis of the crystallization behavior of the examined nanocomposites fits the Avrami equation quite well and gives values for exponent (n) varying between 2 and 3, suggesting a spherulitic crystalline morphology. POLYM. ENG. SCI., 59:704–713, 2019. © 2018 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24986</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Avrami equation ; Cold crystallization ; Crystal structure ; Crystallinity ; Crystallization ; Differential scanning calorimetry ; Lactic acid ; Morphology ; Nanocomposites ; Nanoparticles ; Polymers ; Temperature ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Polymer engineering and science, 2019-04, Vol.59 (4), p.704-713</ispartof><rights>2018 Society of Plastics Engineers</rights><rights>2019 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1031-4842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.24986$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.24986$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Athanasoulia, Ioanna‐Georgia I.</creatorcontrib><creatorcontrib>Tarantili, Petroula A.</creatorcontrib><title>Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites</title><title>Polymer engineering and science</title><description>Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with increasing TiO2 content. Differential scanning calorimetry (DSC) tests revealed that cold crystallization was facilitated, as shown by the decrease of cold crystallization temperature (Tcc). The main melting peak of PLLA phase in nanocomposites, shifted towards higher temperatures and a shoulder appeared in the lower temperature flank of the curve, revealing a second peak for 20/80 w/w TiO2/PLLA nanocomposites. The effect of TiO2 on the isothermal crystallization of PLLA, in the temperature range Tic: 100–120°C, was also investigated by DSC. At lower temperatures (Tic: 100 and 110°C), the effect of TiO2 nanoparticles is an increase of the crystallization rate, leading to lower time for the completion of crystallization, in comparison with that of pure PLLA. The inverse effect was observed at higher crystallization temperatures (Tic: 115 and 120°C). The kinetic analysis of the crystallization behavior of the examined nanocomposites fits the Avrami equation quite well and gives values for exponent (n) varying between 2 and 3, suggesting a spherulitic crystalline morphology. POLYM. ENG. SCI., 59:704–713, 2019. © 2018 Society of Plastics Engineers</description><subject>Avrami equation</subject><subject>Cold crystallization</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Lactic acid</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Temperature</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqUw8AaWWGBI60vs2COquEkV7VAGJst1HHCV2CF2Bdl4BJ6RJyFt0T-cf_h0jvQBcInRBCNEpq31E5JLwY_ACLNcZITT_BiMEKIko0KIU3AW4wYNLGVyBF5X77ZrdA1Tp310yQUfofYljEmvXe1SD0MFG1sn2LgvW8KVW5DpMtT99fz3-6fWJjkDtXHlDfTaBxOaNgw9Np6Dk0rX0V785xi83N-tZo_ZfPHwNLudZ29YIp4ZiUuChUFrzC1nXJCCMckwJqVd0-Gw4JIaLQrDBGOE54IXIpdVVVgtdU7H4OrQ23bhY2tjUpuw7fwwqQhBqKDDyo6aHqhPV9tetZ1rdNcrjNROmxq0qb02tbx73j_0D8DWYbs</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Athanasoulia, Ioanna‐Georgia I.</creator><creator>Tarantili, Petroula A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1031-4842</orcidid></search><sort><creationdate>201904</creationdate><title>Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites</title><author>Athanasoulia, Ioanna‐Georgia I. ; Tarantili, Petroula A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1906-c91d218c0b16e6568275595112deb3b3b18693ca87c5855264867849ff7ea9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Avrami equation</topic><topic>Cold crystallization</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Lactic acid</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Temperature</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasoulia, Ioanna‐Georgia I.</creatorcontrib><creatorcontrib>Tarantili, Petroula A.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanasoulia, Ioanna‐Georgia I.</au><au>Tarantili, Petroula A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites</atitle><jtitle>Polymer engineering and science</jtitle><date>2019-04</date><risdate>2019</risdate><volume>59</volume><issue>4</issue><spage>704</spage><epage>713</epage><pages>704-713</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with increasing TiO2 content. Differential scanning calorimetry (DSC) tests revealed that cold crystallization was facilitated, as shown by the decrease of cold crystallization temperature (Tcc). The main melting peak of PLLA phase in nanocomposites, shifted towards higher temperatures and a shoulder appeared in the lower temperature flank of the curve, revealing a second peak for 20/80 w/w TiO2/PLLA nanocomposites. The effect of TiO2 on the isothermal crystallization of PLLA, in the temperature range Tic: 100–120°C, was also investigated by DSC. At lower temperatures (Tic: 100 and 110°C), the effect of TiO2 nanoparticles is an increase of the crystallization rate, leading to lower time for the completion of crystallization, in comparison with that of pure PLLA. The inverse effect was observed at higher crystallization temperatures (Tic: 115 and 120°C). The kinetic analysis of the crystallization behavior of the examined nanocomposites fits the Avrami equation quite well and gives values for exponent (n) varying between 2 and 3, suggesting a spherulitic crystalline morphology. POLYM. ENG. SCI., 59:704–713, 2019. © 2018 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.24986</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1031-4842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2019-04, Vol.59 (4), p.704-713
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2200739064
source Wiley Online Library Journals Frontfile Complete
subjects Avrami equation
Cold crystallization
Crystal structure
Crystallinity
Crystallization
Differential scanning calorimetry
Lactic acid
Morphology
Nanocomposites
Nanoparticles
Polymers
Temperature
Titanium dioxide
X-ray diffraction
title Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transitions%20and%20stability%20of%20melt%20mixed%20TiO2/Poly(L%E2%80%90lactic%20acid)%20nanocomposites&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Athanasoulia,%20Ioanna%E2%80%90Georgia%20I.&rft.date=2019-04&rft.volume=59&rft.issue=4&rft.spage=704&rft.epage=713&rft.pages=704-713&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.24986&rft_dat=%3Cproquest_wiley%3E2200739064%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200739064&rft_id=info:pmid/&rfr_iscdi=true