Thermal transitions and stability of melt mixed TiO2/Poly(L‐lactic acid) nanocomposites

Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2019-04, Vol.59 (4), p.704-713
Hauptverfasser: Athanasoulia, Ioanna‐Georgia I., Tarantili, Petroula A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(L‐lactic acid) (PLLA) nanocomposites containing 5, 10, and 20 wt% titanium dioxide (TiO2), were prepared by mixing in a co‐rotating twin‐screw extruder. By X‐ray diffraction, a transformation of less ordered (α’‐form) to better organized crystalline (α‐form) structure of PLLA was observed with increasing TiO2 content. Differential scanning calorimetry (DSC) tests revealed that cold crystallization was facilitated, as shown by the decrease of cold crystallization temperature (Tcc). The main melting peak of PLLA phase in nanocomposites, shifted towards higher temperatures and a shoulder appeared in the lower temperature flank of the curve, revealing a second peak for 20/80 w/w TiO2/PLLA nanocomposites. The effect of TiO2 on the isothermal crystallization of PLLA, in the temperature range Tic: 100–120°C, was also investigated by DSC. At lower temperatures (Tic: 100 and 110°C), the effect of TiO2 nanoparticles is an increase of the crystallization rate, leading to lower time for the completion of crystallization, in comparison with that of pure PLLA. The inverse effect was observed at higher crystallization temperatures (Tic: 115 and 120°C). The kinetic analysis of the crystallization behavior of the examined nanocomposites fits the Avrami equation quite well and gives values for exponent (n) varying between 2 and 3, suggesting a spherulitic crystalline morphology. POLYM. ENG. SCI., 59:704–713, 2019. © 2018 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.24986