Acrylonitrile butadiene nanocomposites containing different clays by latex compounding method

Considering elastomers nanocomposites, most of the works are focused on natural rubber, styrene butadiene rubber and rubber blends, while few of them deal with nitrile butadiene rubber (NBR). This article presents the reinforcing effect of two raw sodic montmorillonites (Mts) and one organoclay on N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2019-04, Vol.59 (4), p.736-744
Hauptverfasser: Cova, Mariajose, Fernández, Mariela, Fernández, Alejandra, García, Daniela, Bacigalupe, Alejando, Torres Sánchez, Rosa María, Escobar, Mariano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering elastomers nanocomposites, most of the works are focused on natural rubber, styrene butadiene rubber and rubber blends, while few of them deal with nitrile butadiene rubber (NBR). This article presents the reinforcing effect of two raw sodic montmorillonites (Mts) and one organoclay on NBR matrix prepared by the latex compounding method. Raw Mts increase the mechanical properties of neat matrices. A pseudoplastic behavior is observed with the incorporation of clays into the NBR latex, indicating interactions between polymer chains and clay sheets, in agreement with the results of zeta potential analysis. X‐ray diffraction evaluates changes in the interlayer distance of the clay, indicating the NBR intercalation phenomenon in all cases. Matrices with different clay proportions present variations in the mechanical properties, depending if the aggregation phenomenon is promoted. Morphological analysis of clays and nanocomposites as well as thermal analysis were performed. The variation in mechanical properties after an aging process was studied, evaluating the effects on the tensile strength, ultimate strain and 300% modulus. POLYM. ENG. SCI., 59:736–744, 2019. © 2018 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.24991