Quasiconformal homogeneity of hyperbolic surfaces with fixed-point full automorphisms

We show that any closed hyperbolic surface admitting a conformal automorphism with “many” fixed points is uniformly quasiconformally homogeneous, with constant uniformly bounded away from 1. In particular, there is a uniform lower bound on the quasiconformal homogeneity constant for all hyperellipti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2007-07, Vol.143 (1), p.71-84
Hauptverfasser: BONFERT–TAYLOR, PETRA, BRIDGEMAN, MARTIN, CANARY, RICHARD D., TAYLOR, EDWARD C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that any closed hyperbolic surface admitting a conformal automorphism with “many” fixed points is uniformly quasiconformally homogeneous, with constant uniformly bounded away from 1. In particular, there is a uniform lower bound on the quasiconformal homogeneity constant for all hyperelliptic surfaces. In addition, we introduce more restrictive notions of quasiconformal homogeneity and bound the associated quasiconformal homogeneity constants uniformly away from 1 for all hyperbolic surfaces.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004107000138