Singularities of meromorphic functions with Baker domains

We show that if $f$ is a transcendental meromorphic function with a finite number of poles and $f$ has a cycle of Baker domains of period $p$, then there exist $C > 1$ and $r_0>0$ such that $\bigg\{z:\frac1C r\lt |z|\lt Cr\bigg\}\cap \mbox{sing} (f^{-p})\ne\varnothing,{\for}r\ge r_0.$ We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2006-09, Vol.141 (2), p.371-382
Hauptverfasser: RIPPON, P. J., STALLARD, G. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if $f$ is a transcendental meromorphic function with a finite number of poles and $f$ has a cycle of Baker domains of period $p$, then there exist $C > 1$ and $r_0>0$ such that $\bigg\{z:\frac1C r\lt |z|\lt Cr\bigg\}\cap \mbox{sing} (f^{-p})\ne\varnothing,{\for}r\ge r_0.$ We also give examples to show that this result fails for transcendental meromorphic functions with infinitely many poles.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004106009315