Singularities of meromorphic functions with Baker domains
We show that if $f$ is a transcendental meromorphic function with a finite number of poles and $f$ has a cycle of Baker domains of period $p$, then there exist $C > 1$ and $r_0>0$ such that $\bigg\{z:\frac1C r\lt |z|\lt Cr\bigg\}\cap \mbox{sing} (f^{-p})\ne\varnothing,{\for}r\ge r_0.$ We also...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2006-09, Vol.141 (2), p.371-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if $f$ is a transcendental meromorphic function with a finite number of poles and $f$ has a cycle of Baker domains of period $p$, then there exist $C > 1$ and $r_0>0$ such that $\bigg\{z:\frac1C r\lt |z|\lt Cr\bigg\}\cap \mbox{sing} (f^{-p})\ne\varnothing,{\for}r\ge r_0.$ We also give examples to show that this result fails for transcendental meromorphic functions with infinitely many poles. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004106009315 |