Long-term changes in the primary productivity of migratory caribou (Rangifer tarandus) calving grounds and summer pasture on the Quebec-Labrador Peninsula (Northeastern Canada): the mixed influences of climate change and caribou herbivory

At high herbivore density, herbivory can reduce forage abundance, potentially contributing to habitat degradation and driving changes in herbivore population size or range use, in accordance with the exploitation ecosystem hypothesis. The migratory Rivière-George caribou herd (RGH, Rangifer tarandus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar biology 2019-05, Vol.42 (5), p.1005-1023
Hauptverfasser: Campeau, Allen Brett, Rickbeil, Gregory J. M., Coops, Nicholas C., Côté, Steeve D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At high herbivore density, herbivory can reduce forage abundance, potentially contributing to habitat degradation and driving changes in herbivore population size or range use, in accordance with the exploitation ecosystem hypothesis. The migratory Rivière-George caribou herd (RGH, Rangifer tarandus ) of the Quebec-Labrador Peninsula (Canada) has experienced a large decline in population size since the population peaked in the early 1990s, with similarly large changes in seasonal range use. Demographic changes are suspected to have influenced forage abundance and caribou range use through density-dependent interactions between caribou and their habitat. We used the Normalized Difference Vegetation Index (NDVI) to examine relationships between RGH caribou density and range productivity from 1991 to 2011. A modelling approach was used to control for the response of climate and to isolate the influence of caribou herbivory on primary productivity. Significant negative relationships were identified between caribou density and primary productivity, after controlling for climatic variation, for the global RGH calving grounds ( r 2 = 0.54–0.55) and summer range ( r 2 = 0.42–0.51), but not for the “core” ranges, where caribou density was highest. Positive temporal trends in primary productivity appeared to reflect the decline in RGH population size, suggesting vegetation recovery following reductions in caribou abundance. Climate warming (of up to + 1.5 °C per decade) was most responsible for the strong positive trends in primary productivity observed over the 1991–2011 period, but decreases in RGH herbivory likely also contributed to the increases in range productivity. Forage access likely improved over the study period, which may have influenced RGH range use and habitat selection.
ISSN:0722-4060
1432-2056
DOI:10.1007/s00300-019-02492-6