Noetherian Banach Jordan pairs

An associative or alternative algebra A is Noetherian if it satisfies the ascending chain condition on left ideals. Sinclair and Tullo [21] showed that a complex Noetherian Banach associative algebra is finite dimensional. This result was extended by Benslimane and Boudi [5] to the alternative case....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2001-01, Vol.130 (1), p.25-36
Hauptverfasser: BOUDI, N., MARHNINE, H., ZARHOUTI, C., FERNANDEZ LOPEZ, A., GARCIA RUS, E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An associative or alternative algebra A is Noetherian if it satisfies the ascending chain condition on left ideals. Sinclair and Tullo [21] showed that a complex Noetherian Banach associative algebra is finite dimensional. This result was extended by Benslimane and Boudi [5] to the alternative case. For a Jordan algebra J or a Jordan pair V, the suitable Noetherian condition is the ascending chain condition on inner ideals. In a recent work Benslimane and Boudi [6] proved that a complex Noetherian Banach Jordan algebra is finite dimensional. Here we show the following results: (i) the Jacobson radical of a Noetherian Banach Jordan pair is finite dimensional; (ii) nondegenerate Noetherian Banach Jordan pairs have finite capacity; (iii) complex Noetherian Banach Jordan pairs are finite dimensional.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004100004709