Noetherian Banach Jordan pairs
An associative or alternative algebra A is Noetherian if it satisfies the ascending chain condition on left ideals. Sinclair and Tullo [21] showed that a complex Noetherian Banach associative algebra is finite dimensional. This result was extended by Benslimane and Boudi [5] to the alternative case....
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2001-01, Vol.130 (1), p.25-36 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An associative or alternative algebra A is Noetherian if it satisfies the ascending
chain condition on left ideals. Sinclair and Tullo [21] showed that a complex
Noetherian Banach associative algebra is finite dimensional. This result was extended
by Benslimane and Boudi [5] to the alternative case. For a Jordan algebra J or a Jordan pair V, the suitable Noetherian condition is the
ascending chain condition on inner ideals. In a recent work Benslimane and Boudi
[6] proved that a complex Noetherian Banach Jordan algebra is finite dimensional. Here we show the following results: (i) the Jacobson radical of a Noetherian Banach Jordan pair is finite dimensional; (ii) nondegenerate Noetherian Banach Jordan pairs have finite capacity; (iii) complex Noetherian Banach Jordan pairs are finite dimensional. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004100004709 |