Stably thick subcategories of modules over Hopf algebras

We discuss a general method for classifying certain subcategories of the category of finite-dimensional modules over a finite-dimensional co-commutative Hopf algebra B. Our method is based on that of Benson–Carlson–Rickard [BCR1], who classify such subcategories when B = kG, the group ring of a fini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2001-05, Vol.130 (3), p.441-474
Hauptverfasser: HOVEY, MARK, PALMIERI, JOHN H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss a general method for classifying certain subcategories of the category of finite-dimensional modules over a finite-dimensional co-commutative Hopf algebra B. Our method is based on that of Benson–Carlson–Rickard [BCR1], who classify such subcategories when B = kG, the group ring of a finite group G over an algebraically closed field k. We get a similar classification when B is a finite sub-Hopf algebra of the mod 2 Steenrod algebra, with scalars extended to the algebraic closure of F2. Along the way, we prove a Quillen stratification theorem for cohomological varieties of modules over any B, in terms of quasi-elementary sub-Hopf algebras of B.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004101005060