Stably thick subcategories of modules over Hopf algebras
We discuss a general method for classifying certain subcategories of the category of finite-dimensional modules over a finite-dimensional co-commutative Hopf algebra B. Our method is based on that of Benson–Carlson–Rickard [BCR1], who classify such subcategories when B = kG, the group ring of a fini...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2001-05, Vol.130 (3), p.441-474 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss a general method for classifying certain subcategories of the category of
finite-dimensional modules over a finite-dimensional co-commutative Hopf algebra
B. Our method is based on that of Benson–Carlson–Rickard [BCR1], who classify
such subcategories when B = kG, the group ring of a finite group G over an algebraically
closed field k. We get a similar classification when B is a finite sub-Hopf algebra
of the mod 2 Steenrod algebra, with scalars extended to the algebraic closure of F2.
Along the way, we prove a Quillen stratification theorem for cohomological varieties
of modules over any B, in terms of quasi-elementary sub-Hopf algebras of B. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004101005060 |