M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p

All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2005-09, Vol.139 (2), p.333-349
Hauptverfasser: RIEGER, J. H., RUAS, M. A. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 2
container_start_page 333
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 139
creator RIEGER, J. H.
RUAS, M. A. S.
description All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.
doi_str_mv 10.1017/S0305004105008625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219978319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004105008625</cupid><sourcerecordid>1402681901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1999-ec882158010a5240ef4dc6e4474087ddcea7f2ac9cb36f50a6bf7c7f6caec3f83</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3oLkpquzeewmRy1aLRXRKngoXTab3ZDaPNxNQSn97ya02IN4mWG-x3zDIHRK4JIAYVcT8CEECEhXI-qFe6hHAhrjCGiwj3odjTv-EB1ZOwcAPybQQ_IRp0pXphBNXpXWqbTjTqVYOKvrtYttXtQL1SKTPCvEbFXi-py0eKZMYR1tqqLlksRZvaxnpes01W6s3QvHLaeZcupjdKDFwqqTbe-jt7vb18E9Hj8NHwbXYyxJHMdYySjySBgBARF6ASgdpJKqIGABRCxNpRJMe0LGMvGpDkHQRDPJNJVCSV9Hfh-dbfbWpvpcKtvwebU0ZRvJvTaBRT6JWxHZiKSprDVK89rkhTDfnADvXsn_vLL14I0nt436-jUI88Ep81nI6fCZkxtv9D4cMc5avb_NEEVi8jRTu0v-T_kBCyuBlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219978319</pqid></control><display><type>article</type><title>M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p</title><source>Cambridge University Press Journals Complete</source><creator>RIEGER, J. H. ; RUAS, M. A. S.</creator><creatorcontrib>RIEGER, J. H. ; RUAS, M. A. S.</creatorcontrib><description>All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004105008625</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2005-09, Vol.139 (2), p.333-349</ispartof><rights>2005 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1999-ec882158010a5240ef4dc6e4474087ddcea7f2ac9cb36f50a6bf7c7f6caec3f83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004105008625/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>RIEGER, J. H.</creatorcontrib><creatorcontrib>RUAS, M. A. S.</creatorcontrib><title>M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtLw0AQXkTBWv0B3oLkpquzeewmRy1aLRXRKngoXTab3ZDaPNxNQSn97ya02IN4mWG-x3zDIHRK4JIAYVcT8CEECEhXI-qFe6hHAhrjCGiwj3odjTv-EB1ZOwcAPybQQ_IRp0pXphBNXpXWqbTjTqVYOKvrtYttXtQL1SKTPCvEbFXi-py0eKZMYR1tqqLlksRZvaxnpes01W6s3QvHLaeZcupjdKDFwqqTbe-jt7vb18E9Hj8NHwbXYyxJHMdYySjySBgBARF6ASgdpJKqIGABRCxNpRJMe0LGMvGpDkHQRDPJNJVCSV9Hfh-dbfbWpvpcKtvwebU0ZRvJvTaBRT6JWxHZiKSprDVK89rkhTDfnADvXsn_vLL14I0nt436-jUI88Ep81nI6fCZkxtv9D4cMc5avb_NEEVi8jRTu0v-T_kBCyuBlg</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>RIEGER, J. H.</creator><creator>RUAS, M. A. S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200509</creationdate><title>M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p</title><author>RIEGER, J. H. ; RUAS, M. A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1999-ec882158010a5240ef4dc6e4474087ddcea7f2ac9cb36f50a6bf7c7f6caec3f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RIEGER, J. H.</creatorcontrib><creatorcontrib>RUAS, M. A. S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RIEGER, J. H.</au><au>RUAS, M. A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2005-09</date><risdate>2005</risdate><volume>139</volume><issue>2</issue><spage>333</spage><epage>349</epage><pages>333-349</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004105008625</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2005-09, Vol.139 (2), p.333-349
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_journals_219978319
source Cambridge University Press Journals Complete
title M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M-deformations%20of%20$%5Ccal%20%7BA%7D$-simple%20$%5CSigma%5E%7Bn-p+1%7D$-germs%20from%20$%5Cbb%20%7BR%7D%5En$%20to%20$%5Cbb%20%7BR%7D%5Ep$,%20$n%5Cge%20p&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=RIEGER,%20J.%20H.&rft.date=2005-09&rft.volume=139&rft.issue=2&rft.spage=333&rft.epage=349&rft.pages=333-349&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004105008625&rft_dat=%3Cproquest_cross%3E1402681901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219978319&rft_id=info:pmid/&rft_cupid=10_1017_S0305004105008625&rfr_iscdi=true