M-deformations of $\cal {A}$-simple $\Sigma^{n-p+1}$-germs from $\bb {R}^n$ to $\bb {R}^p$, $n\ge p

All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2005-09, Vol.139 (2), p.333-349
Hauptverfasser: RIEGER, J. H., RUAS, M. A. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All $\cal {A}$-simple singularities of map-germs from $\bb {R}^n$ to $\bb {R}^p$, where $n\ge p$, of minimal corank (i.e. of corank $n-p+1$) have an M-deformation, that is a deformation in which the maximal numbers of isolated stable singular points are simultaneously present in the discriminant.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004105008625