Borel and Julia directions of meromorphic Schröder functions
Meromorphic solutions of the Schröder equation $f(sz)\,{=}\,R(f(z)),$ where $|s|\,{>}\,1$ and $R(w)$ is a rational function with $\deg[R]\,{\geq}\,2$, are studied. We will show that, if $\arg[s]\notin 2\pi {\mathbb Q}$, then $f(z)$ has any Borel direction, without exceptional values other than Pi...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2005-07, Vol.139 (1), p.139-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Meromorphic solutions of the Schröder equation $f(sz)\,{=}\,R(f(z)),$ where $|s|\,{>}\,1$ and $R(w)$ is a rational function with $\deg[R]\,{\geq}\,2$, are studied. We will show that, if $\arg[s]\notin 2\pi {\mathbb Q}$, then $f(z)$ has any Borel direction, without exceptional values other than Picard values, which depend on $R(w)$. Further the case $\arg[s]\,{\in}\,2 \pi {\mathbb Q}$ is also considered. We investigate the relation between Julia directions of $f(z)$ and the Julia set of $R(w)$. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004105008492 |